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Abstract

"A'n this paper, we present new techniques for state assignment of finite state machines based
on state machine decomposition algorithms.

A finite state machine can be decomposed into smaller interacting machines so as to
optimize area and performance of the eventual logic implementation. A recently proposed
form of decomposition, which has been shown to be superior to previous decomposition
methods, involves identifying subroutines or factors in the original machine and extracting
these factors to produce factored and factoring machines.

Optimal state assignment corresponds to finding an optimal multiple general
decomposition of a finite state machine. We present state assignment techniques targeting
two-level and multi-level logic implementations based on factorization algorithms followed
by state assignment algorithms. For the two-level case, we prove that one-hot encoding a
non-trivially factored machine is guaranteed to produce a better result than one-hot encoding
the original machine. Experimental results indicate that this technique of factorization
followed by state assignment is superior to previous state assignment techniques for large
sequential machines, when targeting either two-level or multi-level implementations.
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General Decomposition of Sequential Machines:
* Relationships to State Assignment

Srinivas Devadas

Department of Electrical Engineering and Computer Science
Massachusetts Institute of Technology, Cambridge

Abstract assignment. The problem was partially alleviated in

In this paper, we present new techniques for state [7], via the use of heuristic output (next state) encoding

signment of finitae state machines based on state machine algorithms, but the problem of effective iltegration be-
decomposition algorithms. tween the input and output encoding steps failed to be

A finite state machine can be decomposed into smaller solved. An encoding that satisfies the constraints gen-
interacting machines so as to optimize area and perfor- erated by both the input and output encoding steps is

not guaranteed to be found. Similar problems afflict themance of the eventual logic implementation. A recently early techniques of state assignment that target multi-
proposed form of decomposition, which has been shown level logic implementations [2].
to be superior to previous decomposition methods, in-
volves identifying subroutines or factors in the original It is often convenient to realize a sequential circuit as
machine and extracting these factors to produce factored an interconnection of two oL more .sublircuits for area

and periormance reasons. Hfeuristics tor state assign-
and factoring machines. ment and techniques for logic optimization in sequen-Optimal state assignment corresponds to finding an tial circuit synthesis work better for small circuits as
optimal multiple general decomposition of a finite state opposed to large ones. If a good decomposition can be
machine. We present state assignment techniques tar- found, generally speaking, smaller areas for decomposed
geting two-level and multi-level logic implementations circuits over a single lumped circuit will result. The
based on factorization algorithms followed by state as- decomposition may be attractive from a performance
signment algorithms. For the two-level case, we prove point of view as well. The decomposed circuits can be
that one-hot encoding a non-tr:ialy factored machine clocked faster than the original machine due to smaller
is guaranteed to produce a better result than one-hot en- critical path delays. Of course, a truly optimum state
coding the original machine. Experimental results in- assignment algorithm followed by an optimum logic op-
dicate that this technique of factorization followed by timization step will not work better for a decomposed
state assignment is superior to previous state assign- circuit as opposed to a lumped circuit.

_ ment techniques for large sequential machines, when Decomposition methods can be classified into three
targeting either two-level or multi-level implementa- main categories - parallel, cascade and general de-
tions. compositions, corresponding to no interaction, un-

1 Introduction directionialjnteractionandbi-directional interaction be-
The problem of optimal state assignment involves find- tween the decomposed submachines.
ing a binary encoding of internal states in a finite state The decomposition of sequential machines was first
machine so as to produce a minimum area lo~ic imple- treated in a formal way by Hartmanis (5] in 1960. The
mentation after encoding and logic optimization. Sev- work was expanded in [6] and by others. Unfortunately,
eral techniques for state assignment have been proposed cascade decomposition has limited use in the desin of
in the past; techniques targeting two-level or sum-of- modern finite state machines. For example, specifica-
product implementations (e.g. [4], [7], [6)) and more tions of centralized controllers in microprocessor chips
recently, techniques targeting multi-level combinational do not usually have good cascade decompositions. In (3],
logic implementations [2] [9]. While the techniques tar- factoring algorithms for finding general decompositions
geting two-level implementations attempt to minimize of machines were proposed. These algorithms identify
the number of product terms in the eventual imple- sets of states in the original machine with similar in-
mentation, the techniques targeting multi-level logic at- ternal relationships and represent these sets of states
tempt to minimize the number of literah, in the final by a call to a factoring submachine to produce a fac-
implementation. tored/decomposed submachine. For large machines, the

In [4], the use of multiple-valued minimization to find areas of the decomposed realizations were smaller than
an optimal input (present state) encoding and therefore the lumped circuits.
good state assignment was introduced and results bet- If factorizing prior to encoding and optimizing a
ter than previously proposed techniques were presented. given machine produces a better result than encoding
However, one failing of this strategy is that it ignores and optimization without decomposition, it means that
the next state space/field of the finite state machine the heuristic encoding techniques used produced a sub-
completely, sometimes resulting in a sub-optimal state optimal result in the latter case. In fact, given the de-

composed machines, an encoding can be constructed for
the original machine which produces a result at least of
the same quality as the former case. The problem of
optimal state assignment corresponds to finding an op-
timal multiple general decomposition of a machine (by
multiple decomposition we mean decomposition in sev-
eral components rather than just two).

In this paper, we present new techniques for state
assignment of finite state machines, targeting both two-



level and multi-level logic implementations, based on is an internal edge if it fans into and fans out of states
state machine factorization followed by the state as- within OF'. An exit state in any OFi is one which has
signment techniques of [4] and [2]. If the machine can no internal fanout edges. A state in OF' is an internal
be non-trivially factored, we prove that a better state state if all edges from the state fan into states within
assignment than one-hot encoding is guaranteed using OF' alone, i.e. all fanout edges from the state are in-
these techniques in the two-level case. This means that ternal e. An ento state ie ith
factorizing a machine prior to using a KISS-style [4] ternal edges. An entry state in any Or' is one with
algorithm has a upper bound on the number of result- no internal fanin edges. The fanin edges into a OF' are
ing product terms that is lower than the upper bound denoted fin(i). The fanout edges out of a OF' are de-
when using a KISS-style algorithm on the original ma- noted fout(i). The external edges outside of any factor
chine. Since this upper bound when using KISS-style occurrence are denoted EXT.
algorithms is a tight one, lowering it almost always im- Given two occurrences of a factor, OF1 and OF 2

proves the results. While we can only prove a weaker a state corresponden-" pair is (-,. q'2) D q E
result for the more complicated mulli-k,-el case, experi- 

2 Ade

mental results indicate that that decomposition followed OF' q2 E OF . A factor is defined to be exact if (1)
by state assignment produces superior results for large state correspondence Dairs for all states in OFI to states
sequential machines, in this case as well. The initial in OF 2 can be found such that no state appears in more
factorization results in effective exploitation of the re- than one correspondence pair and (2) for each internal
lationships between the input (present state) space and edge in OF1 , el, if el- > input n e2- > input 0 0
output (next state) space in the decomposed subma- for any e2 in OF2 , (el- > fanout, e2- > fanout) and
chliesfo oth, the tw aevel And multi-level cases. (eI- > fanin, e2- > fanin) are state correspondence

Basice netitons and notations usea are given in Sec-
tion 2. Notions of exact and ideal factors are presented. pairs. The definition of an exact factor can be extended
The global strategy for state assignment is presented for NR > 2.
along with an illustrative example in Section 3. Given An ideal factor with NR occurrences, each with
this strategy, we prove theorems that relate the number NE(i) + NI(i) + 1 states, is an exact factor with NE(i)
of product terms and literals in an ideally-factored one- entry states, NI(i) internal states and a single exit state.
hot encoded machine to a lumped one-hot encoded ma- If two edges in a State Transition Graph can be rep-
chine after optimization. A procedure to find ideal fac- resented by the same product term in an encoded and
tors, given a State Transition Table specification, is pre- minimized two-level implementation, these two edges
sented in Section 4. The procedure is modified to find are said to be mergeable under that encoding.
near-ideal factors in Section 5. Factorization techniques
tailored to (eventual) two-level and multi-level imple- 3 The Global Strategy
mentations are described in Section 6. Experimental In this section, we will describe the global strategy used
results obtained on benchmark examples are presented in integrating factorization algorithms with state assign-
in Section 7. ment techniques. An illustrative example will be pre-
2 Preliminaries sented and some theoretical results given.

The basic idea in our approach is to identify factoring
For an example factorization of a machine, the reader states in a machine, and rather than performing a fac-
is referred to [3]. Any NR disjoint sets of NF states can torization, separately encode the states in the factored
be extracted as occurrences of a factor ad the con- and factoring submachines. By s~prate encoding we
position performed to o tain to sunmac ines M1 and mean that each submachine is encoded using a different
M2 . The complexity of the decomposed submachmies set of bits. The strategy is described in detail below.
is profoundly affected by the choice of the factor. The
transition edges between the NR sets of states play an 1. Given an original machine with Ns states, NR dis-
important role in determining the quality of a factor. joint sets of states, each with cardinality NF are se-
lf exactly similar transition edge relationships exist be- lected. These sets represent occurrences of a factor
tween these sets of states, factorization will result in the and the selection of these sets is accomplished us-
smallest possible number of transition edges in the de- ing factorization techniques that will be described
composed submachines. The flow of state information in Sections 4, 5 and 6.
between the two machines, M1 and M2 , will be mini-
mal and an economical realization will result. However, 2. We perform two separate encoding steps using stan-
if the sets of states corresponding to the occurrences of dard state assignment techniques. The unselected
the factor have dissimilar transition edge relationships, and selected states are encoded separately, using
the resulting submachines will be complex, i.e. with different fields of Nbl and N;2 bits respectively.
a large number of transition edges dependent on state
inf o pmation from tshctwir mac lI e u.edo 3. The NF states in each occurrence ofF, OFi, are en-

We now present deitions which will be used to de-scribe the notions of exact and ideal factoring machines coded using the second field of Nb2  _ log(N) bits.
(factors). The object being defined appears in bold Each occurrence is coded in exactly the same way
type. - corresponding states are given the same code.

A factor is NR (> 1) sets of states and all fanout 4. The unselected states are encoded using the first
edges from these sets of states in the given machine, field of Nbl bits. The states in the NR occurrences
Each set of states is called an occurrence of the factor that were given the same code in Step 3 are differen-
F and is denoted OF'. The maximum number of states tiated using the first field. Each occurrence is given
in any of the NR occurrences of F, is denoted NF (NF 2! a code distinct from any of the unselected states.
2). We thus require Nb2  _ log(Ns - NR x NF + NR)

A transition edge in the occurrence of a factor, OFi , bits.



S1 100000 001
1 ss2 010000 001

.s3 001000 001
s4 000100 100
s5 000100 010

4 s5 s s6 000100 001
s7 000010 100
S8 000010 010

.-.e(2) "s9 000010 001
st0 000001 001

...... ...... ."Figure 2: State Assignment After Factorization
fot) tout(2)

ing inequality.

Nt - 1

P0 > P, + Z (em(i) - 1)- I

Figure 1: Factorization prior to Encoding 1=l

where Iem(i)I is the number of product terms obtained
by one-hot encoding and minimizing the e(i) internal

5. The second field for the unselected states is as yet edges in each OF4. The number of encoding bits used
unspecified. This field can be arbitrarily chosen. after factorization will be (NR - 1) x (NF - 1) - 1 less
However, it is beneficial to uniformly code this field than for the original machine.
f each.ofthe unselected states with a code used

reariy ntne factor occurrences. Df:.e first show that ideal factorizati n And one-
nt encoig do not prevent the merging o? edges that

In Figure 1, a machine with 10 states is shown. A are mergeable when one-hot coding the original ma-
factor with 2 occurrences, each with 3 states, namely, chine. Due to factorization, the edges in the different
(s4, s5, s6) and (s7, s8, s9) is selected. The factor is occurrences of the factor cannot merge. For example,
ideal with a single entry state in each occurrence (s4, el E e(i) cannot merge with e2 E e(j) if i 6 j. But

s7), a single internal state (s5, s8) and a single exit ej and e2 cannot merge in the one-hot coded original
state ssingle.iAfterafactorezat5on,8thenunselected and: machine as well because they fan out to different nextstate (s6, 9). After factorization, the unselected and stat4s.

selected states are one-hot encoded separately as shown Also, edges in the factored and factoring machines
in Figure 2. We have, in our example, 4 unselected cannot merge. It is conceivable that a ey E fin(i) could
states, namely, sl, s2, s3 and sl0. This means we merge with e, E e(i) in the original machine. However,

v t in th r[ fiel gnd 3 bits i the second since F is ideal and only has entry, internal and exitea. -e secon ntId core br the. unselected states
was chosen to coincide with the code assigned to the states, it means that no e, E e(i) fans into the entry
exit states in this case. Indeed, as we will show in Theo- states and ey E fin(i) can only fan into some entry
rem 3.2, this ensures that the factorization is maximally state. Therefore, these edges could not have merged in
exploited. Of course, instead of one-hot coding the two the original machine either.
fields, an encoding of shorter length can be constructed. Similarly, some e, E fout(i) could merge with e. E
One can use state assignment programs like KISS [4] and EXT in the original machine, if they fan into the same
MUSTANG [2) to perform Steps 3 and 4, depending on state. The states outside F are given second field codes
whether two-level or multi-level logic implementations corresponding the code of the exit state in each OF i

are targeted. (Step 5 above). Thus, the exit state's complete code
We now state and prove a theorem that relate the differs only in the first field from the codes of states

numbers of product terms after one-hot encoding and outside F. This means that fanout edges from the exit
two-level optimization in the original and factored ma- state fout(i) can merge with external edges EXT in the
chines. factorized machine also (by merging the first field in the

present state, since they fan into the same next state).
Lemma 3.1 : Two edges that fan out to different next We now show that the internal edges e(i) E Op i

states in a machine are not mergeable under a one-hot can be coalesced, unlike in the original machine. For
encoding. the original machine we will have ZN lem(i)l product

terms corresponding to these edges, after one-hot cod-
Theorem 3.2 : Given a machine M, let the number ing and optimization. The state field is split in two
of product terms in a one-hot coded and logic mini- parts in the factorized machine, fn and fn 2. In the

* mized two-level implementation be Po. If an ideal factor worst case, in the next state logic, these two fields are
F E M is extracted, then the number of product terms realized separately with no sharing whatsoever. It is
obtained by one-hot coding the factored and factoring easy to see that lem(i)l product terms suffice to realize
machines separately, P1, is related to P0 by the follow- fn 2 , sin,.e the e(i) are identical and the fanout states



0/1 1/1 a machine, that can be simultaneously factored to pro-
duce cumulative gains in the number of product terms.

1/0 If the factors are not disjoint, then choices have to be
made as to what factors to extract at the expense of
losing others.

1/0 0/1 1/0 0/1 Theorem 3.3 : If N ideal factors, F1 , F2 , .. FN, are
ertracted which contain disjoint sets of states, the total
gain in the number of product terms when performing

02 S2 a one-hot coding after factorization over one-hot coding

-/1 /0 the original machine is

N

Figure 3: Smallest possible Ideal Factor G = Egj
j=l

have been coded the same in fn 2 . The e, (i) realize the where g is the gain corresponding to eztractna F.

primary outputs as well. The fn 1 field can be realized alone.

even more simply. For each OF' we have e(i) edges with Proof: We now have N + 1 fields that are coded sep-
the same next state field in fnl, corresponding to the arately, corresponding to the N sets of states in each
code assigned to the OF' (Step 4 above). Thus, these factor and the N + 1-th corresponding to the unselected
edges can be merged into a single product term with a states. By the arguments of Theorem 3.2, none of the
don't care primary input vector. The states in the prod- f in(j, i) can merge with e(j, i) in the original or fac-
uct term correspond to all the entry and internal states tored machines for any F. The one-hot coding on the
in the OF' . Therefore, the difference in the number of factored machine is performed as follows. Every occur-
resulting product terms in the factorized machine is at rence OF,' has a distinct N + 1-th field. Each of the
least states (including the exit state) in the Fj and the un-
NR Nx-I selected states are given a k-th field code equal to the

E em(i)I - Jem(NR)I - NR = (Iem(i)I- 1 - 1 exit state's code of Fk. Any fout(j, i) fans out of an
exit state and the c4 of th 9tMte liffers from the un-

i=1 '=I selected states in the + 111 eld alone, imp1ying that
less than the original machine. fout(j, i) and EXT are mergeable in the factorized ma-

The number of encoding bits used in the original chine, if they were mergeable in the original machine.
machine is Ns. In the factorized machine, we need Similarly, the codes of the exit states in each occurrence
Ns - NR x NF + NR bits for the first field and NF of the factor also differ only in the N + 1-th field alone,
for the second. The reduction in bits is therefore and hence if fout(j, i) and fout(k, 1) could merge in the
(NR - 1) x (NF - 1) - I. Q.E.D. original machine, they are mergeable in the factorized

mabine..
State assignment techniques do not perform signif- he gain due to extracting each factor Fj is due to

icantly better than one-hot encoding in terms of the the merging of the e(j, i), which are all disjoint and
number of product terms in the final PLA. KISS guar- there could have been no merging across the e(j, i) in
antees that its result is at least as small as a one-hat the original machine. Therefore the cumulative gain is
coded result, and in general proAuces results with pro-
uct terms slightly better than a one-hot coded imple- N
mentation. NOVA [8], a variation on KISS, produces G =E gj
implementations with generally greater product terms
than KISS or one-hot encoding, but saves on the num- j=l
ber of encoding bits used. Q.E.D.

Thus, Theorem 3.1 is quite a strong result, since it So far, we have dealt with the two-level case. The
provides a deterministic estimate of the number of prod- problem of state assignment for the multi-level case
uct terms in the final implementation. The upper bound corresponds to finding an encoding that minimizes the
on the number of product terms resultingfrom encod- number of literals in the encoded and optimized ma-
ing an ideally factorized machine using a KISS-style al- chine. While we cannot deterministically predict the ef-
gorithm is always lower than using the KISS-style al- fects of multi-level logic optimization, we can relate the
gorithm on the original machine. This upper bound number of literals in the original and factored machines
is found using multiple-valued minimization [4] and as after one-hot encoding and two-level logic minimization,
mentioned earlier, is a tight bound - results signifi- but prior to multi-level optimization.
cantly better than this are seldom obtained. The larger
the ideal factor (in terms of number of states or number Theorem 3.4 : Given a machine M, let the number of
of occurrences), the greater will be the gains in using the literals in a one-hot coded and logic minimized two-level
strategy described. Even extracting small ideal factors implementation be Lo. If an ideal factor F E M is ez-
will produce better results. The smallest possible ideal tracted, then the number of literals obtained by one-hot
ftctor i o wih 2 sttes and 2 occurrences shown ina coding the factored and factoring machines separately,
F igurel. Theifactor has one entry state and one exit Li, is related to Lo by the following inequality.
state. It is highly probable that at least one of these
factors will exist in a large machine. NR-1

The strategy presented can be generalized to multiple Lo >_ L1 + Z LIT(em(i)) -
factorization. Several disjoint ideal factors may exist in



Nit x je.(NR)I - Ni x (Nr - 1) - iEXT, .1 1. First, all sets of states of cardinality equal to NR
where LIT(er(i)) corresponds to the number of literols whose fanin edges assert the same outputs, if driven
owhaered e t ncoespond niii the numberofliterals by the same input combination, regardless of whatobtained by one-hot encoding and minimizing the e(i) states they fan out of, are found. These sets are
internal edges in each Op i and EXTm corresponds to stored in TFI.
the number of product terms after one-hot coding and
minimizing the external edges EXT. 2. All sets of states of cardinality equal to NR whose

fanout edges assert the same outputs, if driven
Proof: The arguments of Theorem 3.2 corresponding by the same input combination, regardless of what
to the merging of edges hold. However, the number of states they fan into, are found. These sets are
literals in the external edges EXT in the factored ma- stored in TFo.
chine is higher because the number of literals in each
state is 2, rather than 1. If n external edges merge, 3. A (new) set of states SE E TFt is picked.
we have n + 1 literals in the present state space of the
factored machine, as opposed to n in the original ma- 4. An attempt is made to construct an ideal factor(s)
chine (It is n + I rather than 2n because the merging whose exit state set corresponds to SE. This is
of edges implies one of the state fields in each of the done by tracing the fanin of SE. The set of states
edges is identical). Therefore, the number of extra lit- that fan into each qi E SE , 1 < i < NR are found,
erals is IEXTmI (In the worst case of EXT not merging namely, fanin(q,).
with any e(i)). The reduction in the number of liter- 5. A check is made to see if the fanin(q,) are in direct
als is due to the merging of the e(i). The number of correspondence. Each correspondence set must be-
literals in these edges in the original machine is simply long to Tpo and the edge relationships between q,

N LIT(en(i)). In the factored machine, we have and fanin(q) and within the fanin(qi) must be

only one set of these e(i) edges. The number of literals identical for all i. If the check fails, go to Step 3.
in this set is not the same, however, as in the original
machine sets, since the number of literals in the present 6. F = q, U fanin(qj) may be an ideal factor, with
state space is higher (the number of literals in each state q, representing the exit state of occurrence OF i and
is 2, rather than 1). Consider the first next state field, fanin(q) the entry states. If so, F is recorded as
fn. The first present state field will have NR liter- such.
als in each product term that realizes fri1 . The second
present state field will have the same number of liter- 7. The fanin of the fanin(qi) are traced back. Given
als as in any em(i) in the lumped field of the original a state si E fanin(qj), if the fanin(sij) are not in
machine. Now consider the second next state field. NR direct correspondence, then sjj has to be an entry

* product terms suffice to realize this field. The num- state. If si, is not an entry state (receives edges
ber of literals in each of these product terms is simply from some sik E fanin(qi) or from q,), go to 3.
NF- 1, corresponding to the entry and internal states in
F, since the primary input field is a don't care. There- 8. For all states sij, that do not have to be entry
fore, the total number of literals in the factored machine states, fanin(si,) are found. A check is made to
is LIT(em(NR)) + NR x ie,,(NR)I + NR x (NF - 1). see ifs, can be an entry state for some ideal factor.
The reduction in literals is then Choices corresponding to treating each of these si,

NR-1 as an internal or entry state are exhaustively ex-
LIT(e,,(i)) - NR, x Ie,.(NR)I plored. If the sij is chosen to be an entry state, it

i=i is merely added to the current F. Else if sij is in-
- NR x (Np - 1) - IEXTI ternal, fanin(sii) is also added to F. The various

Q.E.D. F's are checked for ideality and the ideal factorsare recorded.
4 Ideal Factorization a Se 8re rh

In this section, we will present an algorithm for finding 9. Steps 7-8 are repeated for the fanins of the
all ideal factors given a State Transition Graph descrip- fanin(sij) and so on.
tion of a machine. The techniques of [3] that identify
exact factors cannot be used, since they assumed the ex- The function fanin(arg) above returns all states such
istence of a starting state in each occurrence from which that an edge from arg to each of these states exists.
all other states in the occurrencr. could bere.ched. or 5 Identifying Near-Ideal Factors

o not make this assumption here - an ea tor
may have multiple entry states and therefore no start- While the number of ideal factors in a machine is typi-
in state. cally small and all ideal factors can be enumerated, there

These ideal factors are extracted prior to state as- may be large numbers of near-ideal factors. Extracting
signment in order to improve the performance of state these factors does not provide the gain corresponding to
assignment algorithms. The factors extracted may over- Theorem 3.2 or Theorem 3.4, but could produce some
lap. Thus, not all factors can be extracted - extracting reduction in the eventual number of product terms or
one factor may invalidate the other. In Sections 5 and literals. We therefore have to solve the problem of de-
6, we discuss techniques for choosing the appropriate tecting non-ideal, but good, factors and estimating the
factor(s) to extract in order to maximize the reduction gain in extracting them.
in logic complexity after encoding and optimization. If one can estimate the ain of a non-ideal factor,

The procedure starts with all possible exit state sets then a search procedure similar to the one described in
and traces the fanin of the states so as to identify ideal the previous section can be used to detect good factors,
factors. i.e. factors with large associated gains. This estimation



of gain in different for the two-level or multi-level cases
and is described in the next section. In this section, I Example Imp I out I sta I mm-enc
modifications to the ideal factor search procedure to find srg -I 1 1 8 J_
near-ideal factors are described. These modifications modl2 T1 T 7 4
are similar to those proposed in [3] to find near-exact -sT - T 2
factors. planet T 1W 4rsand 1 / 3

1. Find similarity weights for all possible NR sets of ITt 9
states. These weights are found on the basis of I/O __ _ 2T 59 4 "T
fanout and fanin relationships between each set of industi T3 1TW 215
states, i.e. the number of input symbols for which indust2 16 T5 43 4
edges fanning out of all states in the set have dif- conti Y T -BT
ferent outputs. A weight of zero would correspond cont - -6 - - -5
to exactly similar states.

2. These sets are ordered in terms of increasing Table 1: State Machine Statistics
weights (decreasing similarity). Beginning from
each initial exit state set, the fanins of the set are
traced as in Section 4. number of product terms, by one-hot coding and mini-

3. The fanin states from the initial set are found and mizing e(i) separately. e'(i) corresponds to e(i) E OFi

added to the factor (Step 5 in Section 4). The except that corresponding states in each OFi are given
gain is extracting the current factor is estimated the same codes (as when factoring).
(described in Section 6). If the gain is below a Near-ideal factors are selectively extracted based on
prescribed value, the search is terminated and a their estimated maximum cumulative gain.
new iteration with a new initial set is begun. Else,
the factor and its associated gain are recorded and 6.2 Targeting Multi-Level Logic
fanin tracing continues.

In the multi-level case, non-ideal, but good factors play
Thus, given NR, one can find non-ideal factors, esti- a more important part. First, all ideal factors are

mate the gains in extracting them and select factors found and their gains calculated. However, these fac-
with estimated gain greater than a prescribed value. tors are not immediate'y extracted as in the two-level
This value- is a function of the number of states n the cwith the largest estimated gainnon-dea factor whose gain is being estimate. Larger case. Near-ideal factors
factors, i.e. factors with more states, require a greater in literals are found using the methods of Section 5. The
estimated gain in order to be recorded and in order for gain of ideal and non-ideal factors is measured by
the search to contnue. T be done berause of the es- N d arNtimation o1 gain or non-idea tactors is approximate. Z-LIT(e,(i)) - LIT( ( U e'(i)

6 Implementation-Specific Fac- i=1
torization Techniques where e..(i) and e'(i) are the same as before. A selectionof non-overlapping ideal and near-ideal factors is made6.1 Targeting Two-Level Logic so as to maximize the overall gain.

Given a machine. and all the ideal factos in the ma-chine, an appropriate set offactors has to be selected so 7 Results
as to maximize the cumulative gain in extracting these Results
factors. The factors may be disjoint or may overlap. In In this section, we present some preliminary results us-
the latter case, extracting one factor may invalidate the ing the factorization algorithms presented i the previ-
other. Thus, a step that selects the largest (maximum The stattics of benchmark examples from the
gain), non-overlapping set of factors has to be performed MCNC 1987 Logic Synthesis Workshop and other
prior to state encoding. However, since the number of sources are given in Table 1. The examples were first
ideal factors is generally not very large, this step can be state minimized. In Table 1, the number of inputs (inp),
performed optimally, via exhaustive search. outputs (out), states (sta) and the minimum number of

The issue extracting of non-ideal, but pood factors is bits (min-enc) required for encoding are given. In Table
important. Since two-level implementations are quite 2
constrained, even a small non-ideality in a factor can comparisons are drawn against the state assignment
result in negligible gain in the number of product terms program KISS. The number of encoding bits used (eb)
when extractin& the factor. Hence, ideal factors are al- and the number of product terms (prod) required are
ways extracted if they exist. A search can be performed given for KISS. The results for factorization followed by
on the ideally-factored machine, using the procedure de- a KISS-style algorithm are given under FACTORIZE.
scribed in the previous section, for good factors, or if no The CPU times required for factorization and state as-
ideal factors exist, on the original machine. The gain of signment were nominal in all cases. The number of oc-
non-ideal factors in the two-level case is measured by currences of the extracted factor (occ) and the type of

NR NR factor extracted (typ = IDE for ideal, NOI for non-
ideal) are indicated for each example. As the results

E e-(i) - K( U e'(i) ). i indicate, ideal (or close to ideal) factors exist in large
=1 i=1 machines and extracting them produces better results.

to provide a relative, rather than absolute estimate, cor- The smaller machines in the benchmark set (not shown) V
responding to the possible reduction in the number of are less amenable to factorization - in fact, KISS might
product terms. As before, em(i) corresponds to the indeed be producing the minimum number of product
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e.i I eb od prod I eb__I prod I lit lit I lit

sre 2 k 5 1 6 4 mod12 2/IDE 4 27 28 38 33
mo12 2 [DE 14 14 - 1 sreg 2/IDE 3 2 2 2 8sT _ 2 10t; 1 81 ,815 s 2/IDE 1 5 160 161 376 160
planet- 2 NQ1I IS 89 6 89-sand 2 W Im anet 21NOI 16 5

4 IDE 6 87 sand 4/1 6 531 538 75
7t 2 NI 16 92 f 91 styr 2/NOI 6 581 582 M4
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nd =tI 2 N'I W 8 industl 2/NOI 6 401 1 404 441 41
inldust2 2*IDE T 9** T T9 indust2 2/ID 6 W 498 50 5 3 4
inr us-m -r- = - -7 -- - R _ Tr _Mcontl 4 IDE 8 1 9 TI contl OR 872 861 994 946
cont2 IE - 8 68 cont2 I 8 451 456 612

Table 2: Comparisons for two-level implementations Table 3: Comparisons for multi-level implementations

terms for these examples. Two exceptions are the ex- N00014-87-K-0825.
amples raodl2 and sreg; counters and shift registers
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